

CHEMISTRY OF MATERIALS

VOLUME 5, NUMBER 4

APRIL 1993

© Copyright 1993 by the American Chemical Society

Communications

Synthesis of Intermetallic Nitrides by Solid-State Precursor Reduction

David S. Bem,[†] Charles P. Gibson,[‡] and Hans-Conrad zur Loyer^{*,†}

Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Department of Chemistry, University of Wisconsin
Oshkosh, Oshkosh, Wisconsin 54901

Received November 19, 1992

Revised Manuscript Received February 19, 1993

Solid-state nitrides are of interest because they exhibit technologically useful properties.^{1,2} For example, some transition-metal nitrides are extremely hard and strong yet are good conductors of heat and electricity.³⁻⁶ Others show interesting catalytic properties,⁷ where the similarity between nitrides and the group VIII metals has been pointed out.^{2,8,9} Because of these properties nitrides have found utility as packaging materials, as structural materials, and as catalysts. Despite the potential technological importance of nitrides, only a few hundred are known. Due to the synthetic challenges of ternary nitride forma-

tion, most studies have focused on binary nitrides.¹⁰ We are particularly interested in the syntheses and characterization of ternary nitrides because (1) these materials may have enhanced or improved properties relative to binary nitrides and (2) relatively few ternary nitrides have been synthesized and fully characterized.^{1,2,4}

In general, nitrides have relatively low decomposition temperatures due to the high bond energy of N₂ (941 kJ/mol).⁴ Consequently, high-temperature techniques have provided only limited success in the preparation of ternary nitrides and low and moderate temperature approaches become essential for preparing both metastable (kinetic) and stable (thermodynamic) compounds. The development of new low-temperature procedures for synthesizing ternary nitrides would greatly expand this class of materials. Currently there are a number of research groups working on a variety of approaches in this rapidly growing field.¹¹⁻²³

One successful approach has been the use of molecular precursors to make thin films and powders of binary

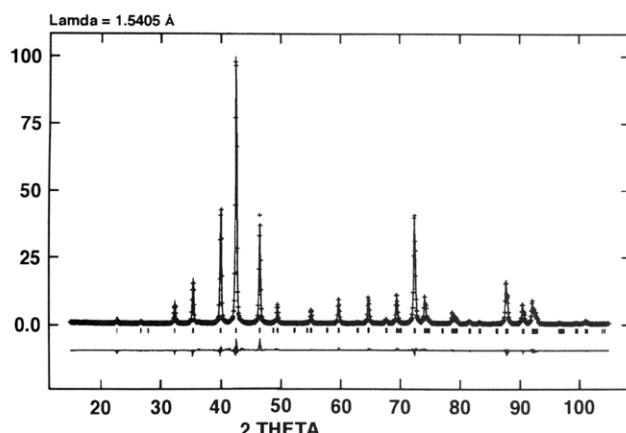
* Massachusetts Institute of Technology.

[†] University of Wisconsin, Oshkosh.

* To whom correspondence should be addressed.

(1) DiSalvo, F. J. *Science* 1990, 247, 649-655.
(2) Volpe, L.; Boudart, M. *J. Solid State Chem.* 1985, 59, 332-347.
(3) Oyama, T. S. *J. Solid State Chem.* 1992, 96, 442-445.
(4) Toth, L. E. *Transition Metal Carbides and Nitrides*; Academic Press: New York, 1971.

(5) Shakelford, J. F. *Introduction to Materials Science for Engineers*; Macmillan: New York, 1988.


(6) Goldschmidt, H. J. In *Interstitial Alloys*; Plenum Press: New York, 1967; pp 214-244.

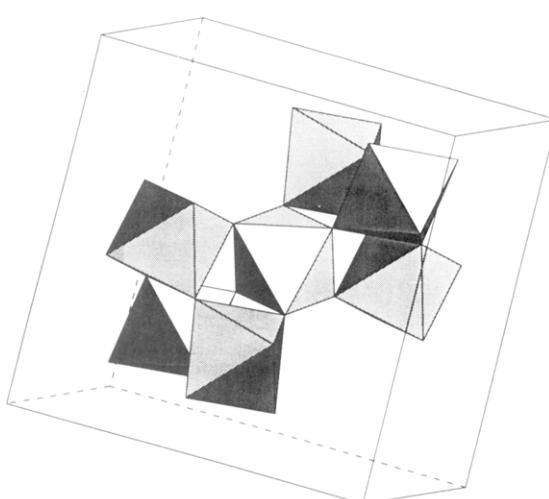
(7) Kugler, E. L.; McCandlish, L. E.; Jacobson, A. J.; Chianelli, R. R. United States Patent, 5,138,111, 1992.

(8) Levy, R. B.; Boudart, M. *Science* 1973, 181, 547-549.

(9) Jaggers, C. H.; Michaels, J. N.; Stacy, A. M. *Chem. Mater.* 1990, 2, 150.

- (10) Glasson, D. R.; Jayaweera, S. A. A. *J. Appl. Chem.* 1968, 18, 65-77.
- (11) Gudat, A.; Kniep, R.; Rabenau, A.; Bronger, W.; Ruschewitz, U. *J. Less-Common Met.* 1990, 161, 31-36.
- (12) Gudat, A.; Kniep, R.; Rabenau, A. *Thermochim. Acta* 1990, 160, 49-56.
- (13) LaDuca, R. L.; Wolczanski, P. T. *Inorg. Chem.* 1992, 31, 1311-1313.
- (14) Wiley, J. B.; Kaner, R. B. *Science* 1992, 255, 1093-1097.
- (15) Zachwieja, U.; Jacobs, H. *Eur. J. Solid State Inorg. Chem.* 1991, 28, 1055-1062.
- (16) Holl, M. M. B.; Wolczanski, P. T.; Van Duyne, G. D. *J. Am. Chem. Soc.* 1990, 112, 7989-7994.
- (17) Gudat, A.; Haag, S.; Kniep, R.; Rabenau, A. *J. Less-Common Met.* 1990, 159, L29-L31.
- (18) Gudat, A.; Kniep, R.; Rabenau, A. *Thermochim. Acta* 1990, 160, 49-56.
- (19) Gudat, A.; Kniep, R.; Rabenau, A.; Bronger, W.; Ruschewitz, U. *J. Less-Common Met.* 1990, 161, 31-36.
- (20) Gudat, A.; Kniep, R.; Rabenau, A. *Angew. Chem.* 1991, 103, 217-218.
- (21) Höhn, P.; Kniep, R. *Z. Naturforsch.* 1992, 47, 477-481.
- (22) Höhn, P.; Haag, S.; Milius, W.; Kniep, R. *Angew. Chem.* 1991, 103, 874-875.
- (23) Gudat, A.; Kniep, R. *J. Alloys Compd.* 1992, 179, 333-338.

Figure 1. Powder X-ray data, including Rietveld fit and residuals, for $\text{Fe}_3\text{Mo}_3\text{N}$.


Table I. Atomic Positions of $\text{Fe}_3\text{Mo}_3\text{N}$ Space Group $Fd\bar{3}m$

metal	Wyckoff	<i>x</i>	<i>y</i>	<i>z</i>
Mo	48(f)	0.3210	$1/8$	$1/8$
Fe(1)	32(e)	0.2937	0.2937	0.2937
Fe(2)	16(d)	$1/2$	$1/2$	$1/2$
N	16(c)	0	0	0

nitrides.^{13,16,24} Nonmolecular precursors,^{9,25} such as high surface area powders,²⁶ have also been used as an avenue to metastable phases. Ternary transition-metal nitrides have been synthesized by reacting a transition-metal nitride with an alkali- or alkaline-earth metal under N_2 or NH_3 yielding numerous alkali- or alkaline-earth-metal containing nitrides,²⁷⁻³⁸ for example, KTaN_2 ,³⁸ Li_3FeN_2 ,¹⁹ or NaTaN_2 .¹⁵ Another approach for synthesizing alkali-metal-containing ternary nitrides has been the use of mixed metal precursors; for example, the ternary nitride LiMoN_2 can be synthesized by reaction between Li_2MoO_4 and NH_3 (g).³⁹ We are currently investigating the use of transition-metal molybdates as precursors to ternary transition-metal nitrides, an approach that has not been extensively explored and that promises to lead to the discovery of a large number of new ternary nitrides.

In this study, transition-metal molybdates FeMoO_4 and NiMoO_4 were used as precursors for ternary transition-

- (24) Winter, C. H.; Sheridan, P. H.; Lewkebandara, T. S.; Heeg, M. J.; Proscia, J. W. *J. Am. Chem. Soc.* 1992, 114, 1095-1097.
- (25) Ross, C. B.; Wade, T.; Crooks, R. M. *Chem. Mater.* 1991, 3, 768-771.
- (26) Chlorey, R. W.; Lednor, P. W. *Adv. Mater.* 1991, 3, 474-485.
- (27) Brokamp, T.; Jacobs, H. *J. Alloys Compd.* 1991, 176, 47-60.
- (28) Cordier, G.; Gudat, A.; Kniep, R.; Rabenau, A. *Angew. Chem. 1989*, 101, 1689-1690.
- (29) Cordier, G.; Gudat, A.; Kniep, R.; Rabenau, A. *Angew. Chem. 1989*, 101, 204.
- (30) Cordier, G.; Höhn, P.; Kniep, R.; Rabenau, A. *Z. Anorg. Allg. Chem. 1990*, 591, 58-66.
- (31) Vennos, D. A.; Badding, M. E.; DiSalvo, F. J. *Inorg. Chem.* 1990, 29, 4059-4062.
- (32) Vennos, D. A.; DiSalvo, F. J. *J. Solid State Chem.* 1991, 98, 318-322.
- (33) Chern, M. Y.; DiSalvo, F. J. *J. Solid State Chem.* 1990, 88, 459-464.
- (34) Chern, M. Y.; DiSalvo, F. J. *J. Solid State Chem.* 1990, 88, 528-533.
- (35) Chern, M. Y.; Vennos, D. A.; DiSalvo, F. J. *J. Solid State Chem.* 1992, 96, 415-425.
- (36) Juza, R.; Langer, K.; Von Benda, K. *Angew. Chem.* 1968, 80, 373-384.
- (37) Gudat, A.; Milius, W.; Haag, S.; Kniep, R.; Rabenau, A. *J. Less Common Met.* 1991, 168, 305-312.
- (38) Rauch, P. E.; DiSalvo, F. J. *J. Solid State Chem.* 1992, 100, 160-165.
- (39) Elder, S. H.; DiSalvo, F. J.; Doerrer, L. H. *Chem. Mater.* 1992, 4, 928-937.

Figure 2. Corner shared NM_6 octahedra of the $\text{Fe}_3\text{Mo}_3\text{N}$ structure.

Table II. Indexed Powder Pattern of $\text{Fe}_3\text{Mo}_3\text{N}$: $a = 11.083$ Å

d_{obs}	d_{calc}	$h \ k \ l$	I/I_0
6.395	6.395	1 1 1	<1
3.918	3.916	2 2 0	2
3.340	3.340	3 1 1	<1
2.769	2.769	4 0 0	10
2.541	2.541	3 3 1	19
2.261	2.261	4 2 2	45
2.131	2.132	5 1 1	100
1.957	1.958	4 4 0	36
1.845	1.846	4 4 2	6
1.669	1.669	6 2 2	4
1.552	1.551	5 5 1	7
		7 1 1	
1.442	1.442	7 3 1	7
		5 5 3	
1.385	1.385	8 0 0	1
1.306	1.305	6 6 0	30
		8 2 2	
1.279	1.279	5 5 5	7
1.212	1.215	7 5 3	2
1.209	1.209	8 4 2	2
1.114	1.113	9 3 3	10
		7 7 1	

metal nitrides. Hydrated metal molybdates were prepared by dropwise addition of 400 mL (0.25 M) of aqueous solution of metal chloride, FeCl_2 (Cerac, 99.99%) and NiCl_2 (Cerac, 99.5%), to a 150-mL (0.55 M) solution of $\text{Na}_2\text{MoO}_4 \cdot (\text{H}_2\text{O})_2$ (Aldrich). A solid product was isolated by vacuum filtration and rinsed with two washings of water followed by a single washing with ethanol. The solid was air-dried overnight followed by a further drying at 150 °C for 24 h. The products were a brown amorphous powder (FeMoO_4 precursor) and a green amorphous powder (NiMoO_4 precursor). Calcining the amorphous products under nitrogen at 700 °C for 6 h yielded crystalline FeMoO_4 (JCPDS Card 16,326) and NiMoO_4 (JCPDS Card 33,948). The amorphous materials were used in the subsequent synthesis of $\text{Fe}_3\text{Mo}_3\text{N}$ and $\text{Ni}_3\text{Mo}_3\text{N}$.

The metal molybdate precursor was placed into an alumina boat which was inserted into a quartz flow through reactor located in a hinged tube furnace. The sample was heated under flowing ammonia gas at 5 °C/min to 700 °C for $M = \text{Ni}$ or 800 °C for $M = \text{Fe}$. The samples were held at the reaction temperature for 12 h and then quenched to room temperature by turning off and opening the furnace. $\text{Fe}_3\text{Mo}_3\text{N}$ and $\text{Ni}_3\text{Mo}_3\text{N}$ can also be prepared using forming gas (5% H_2 /95% N_2) instead of ammonia

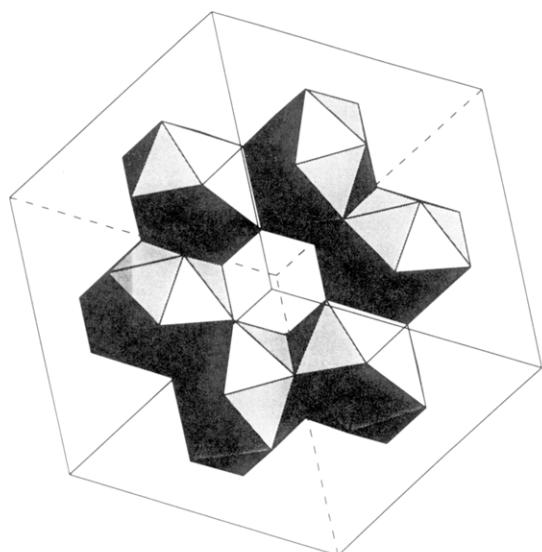


Figure 3. $\text{Fe}[\text{Mo}_6\text{Fe}_6]$ polyhedra of the $\text{Fe}_3\text{Mo}_3\text{N}$ structure.

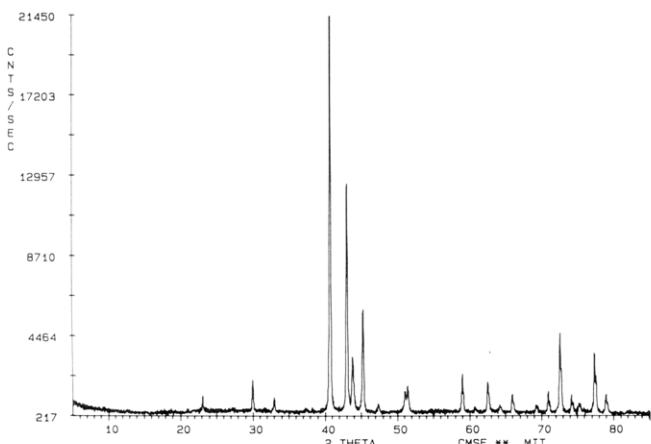


Figure 4. Powder X-ray diffraction pattern of $\text{Ni}_3\text{Mo}_3\text{N}$.

under the same reaction conditions. This allowed us to follow the weight loss in a TGA, which was consistent with the formation of $\text{Fe}_3\text{Mo}_3\text{N}$ and $\text{Ni}_3\text{Mo}_3\text{N}$. The results of C, H, N combustion analysis (Oneida $N_{\text{Ni}} = 2.81$ wt %, $N_{\text{Fe}} = 3.1$ wt %) were in good agreement with the nitrogen content predicted from the TGA. The metal ratio for $\text{Fe}_3\text{Mo}_3\text{N}$ was determined using EDS on a JEOL JSM 6400 scanning electron microscope collected by a Noran Z-max windowless detector with quantification performed using virtual standards on associated Voyager software. The sample was found to contain molybdenum and iron in a molar ratio of 52:47 ($\pm 3\%$). Observation of the nitride by SEM showed it to be a highly porous submicron ($< 1 \mu\text{m}$) powder. The metal content of $\text{Ni}_3\text{Mo}_3\text{N}$ was determined by elemental analysis (Oneida) and was found to contain a nickel to molybdenum ratio of 49:50. Further characterization of the products was carried out by X-ray powder diffraction using a Rigaku RU300 diffractometer with $\text{Cu K}\alpha$ radiation ($\lambda = 1.54184 \text{ \AA}$). NBS silicon was used as a standard for accurate peak positions.

Table III. Indexed Powder Pattern of $\text{Ni}_3\text{Mo}_3\text{N}$: $a = 6.635 \text{ \AA}$, $b = 6.668 \text{ \AA}$, $c = 6.573 \text{ \AA}$

d_{obs}	d_{calc}	$h \ k \ l$	I/I_0
3.843	3.842	1 1 1	4
2.977	2.973	2 1 0	8
2.715	2.713	2 1 1	4
2.215	2.214	1 2 2	100
2.101	2.099	3 0 1	58
2.066	2.081	1 0 3	14
2.003	2.007	3 1 1	26
1.917	1.912	2 2 2	3
1.789	1.787	2 3 1	6
1.775	1.774	3 1 2	7
1.565	1.568	0 3 3	10
1.485	1.485	4 0 2	8
1.450	1.451	4 1 2	2
1.416	1.412	2 3 3	5
1.357	1.357	4 2 2	3
1.327	1.327	5 0 0	6
1.302	1.301	5 0 1	21
1.277	1.275	3 3 3	5
1.233	1.234	4 3 2	3
1.212	1.212	5 2 1	16

The X-ray powder diffraction pattern of $\text{Fe}_3\text{Mo}_3\text{N}$ was indexed for a cubic structure, $a = 11.083 \text{ \AA}$. The pattern is similar to that of the cubic eta carbide $\eta\text{-Fe}_3\text{W}_3\text{C}$.⁴⁰⁻⁴² Rietveld refinement in the space group $Fd\bar{3}m$ of the X-ray data resulted in the atomic positions shown in Table I with $R_p = 6.6\%$ and $R_{wp} = 9.9\%$ confirming the η -carbide structure. The data, fit, and residuals for $\text{Fe}_3\text{Mo}_3\text{N}$ are shown in Figure 1, and the observed and calculated d spacings as well as the indexing are listed in Table II.

The structure consists of NMo_6 octahedra that are corner shared, with the iron atoms occupying the sites between the octahedra (Figure 2). The iron atoms are located in 12-fold, pseudo-icosahedral coordination, surrounded by six molybdenum and six from iron atoms, or four molybdenum, two nitrogen, and six iron atoms to give $\text{Fe}[\text{Mo}_6\text{Fe}_6]$ and $\text{Fe}[\text{Mo}_6\text{Fe}_4\text{N}_2]$ (Figure 3). $\text{Ni}_3\text{Mo}_3\text{N}$, unlike $\text{Fe}_3\text{Mo}_3\text{N}$, does not have the η -carbide structure. The X-ray powder diffraction pattern of $\text{Ni}_3\text{Mo}_3\text{N}$ (Figure 4) is consistent with a new orthorhombic phase, $a = 6.635 \text{ \AA}$, $b = 6.668 \text{ \AA}$, and $c = 6.573 \text{ \AA}$. The observed and calculated d spacings as well as the indexing are listed in Table III.

We are currently investigating the magnetic and electronic properties of the iron and nickel molybdenum nitrides, as well as pursuing the formation of other transition metal nitrides from molybdate precursors.

Acknowledgment. Financial support from DuPont and Hoechst-Celanese is gratefully acknowledged.

(40) Kuo, K. *Acta Metall.* 1953, 1, 301-304.

(41) Villars, P.; Calvert, L. D. *Pearson's Handbook of Crystallographic Data for Intermetallic Phases*, American Society for Metals International: Materials Park, OH, 1985.

(42) Daams, J. L. C.; Villars, P.; Vucht, J. H. N. v. *Atlas of Crystal Structure Types for Intermetallic Phases*, American Society for Metals International: Materials Park, OH, 1991.